Network analysis of SRC-1 reveals a novel transcription factor hub which regulates endocrine resistant breast cancer.
Author | |
---|---|
Abstract |
:
Steroid receptor coactivator 1 (SRC-1) interacts with nuclear receptors and other transcription factors (TFs) to initiate transcriptional networks and regulate downstream genes which enable the cancer cell to evade therapy and metastasise. Here we took a top-down discovery approach to map out the SRC-1 transcriptional network in endocrine resistant breast cancer. First, rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) was employed to uncover new SRC-1 TF partners. Next, RNA sequencing (RNAseq) was undertaken to investigate SRC-1 TF target genes. Molecular and patient-derived xenograft studies confirmed STAT1 as a new SRC-1 TF partner, important in the regulation of a cadre of four SRC-1 transcription targets, NFIA, SMAD2, E2F7 and ASCL1. Extended network analysis identified a downstream 79 gene network, the clinical relevance of which was investigated in RNAseq studies from matched primary and local-recurrence tumours from endocrine resistant patients. We propose that SRC-1 can partner with STAT1 independently of the estrogen receptor to initiate a transcriptional cascade and control regulation of key endocrine resistant genes. |
Year of Publication |
:
2018
|
Journal |
:
Oncogene
|
Date Published |
:
2018
|
ISSN Number |
:
0950-9232
|
URL |
:
http://dx.doi.org/10.1038/s41388-017-0042-x
|
DOI |
:
10.1038/s41388-017-0042-x
|
Short Title |
:
Oncogene
|
Download citation |