Skip to main content

Synthetic cells produce a quorum sensing chemical signal perceived by Pseudomonas aeruginosa.

Author
Abstract
:

Recent developments in bottom-up synthetic biology (e.g., lipid vesicle technology integrated with cell-free protein expression systems) allow the generation of semi-synthetic minimal cells (in short, synthetic cells, SCs) endowed with some distinctive capacities of natural cells. In particular, such approaches provide technological tools and conceptual frameworks for the design and engineering of programmable SCs capable of communicating with natural cells by exchanging chemical signals. Here we describe the generation of giant vesicle-based SCs which, via gene expression, synthesize in their aqueous lumen an enzyme that in turn produces a chemical signal. The latter is a small molecule, which is passively released in the medium and then perceived by the bacterium Pseudomonas aeruginosa, demonstrating that SCs and bacteria can communicate chemically. The results pave the way to a novel basic and applied research area where synthetic cells can communicate with natural cells, for example for exploring minimal cognition, developing chemical information technologies, and producing smart and programmable drug-producing/drug-delivery systems.

Year of Publication
:
2018
Journal
:
Chemical communications (Cambridge, England)
Date Published
:
2018
ISSN Number
:
1359-7345
URL
:
http://dx.doi.org/10.1039/c7cc09678j
DOI
:
10.1039/c7cc09678j
Short Title
:
Chem Commun (Camb)
Download citation